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LETTER TO THE EDITOR 

Vectorised dynamic Monte Carlo renormalisation group for 
the Ising model 

Claus Kallet 
Institut fur Theoretische Physik der Universitat zu Koln, Ziilpicher Strasse 77 ,  D-5000 Koln 
41, West Germany 

Received 16 July 1984 

Abstract. Applying the dynamic Monte Carlo renormalisation group to the Glauber kinetic 
Ising model, the dynamical critical exponent z is found by simulation of up to 8192* and 
5123 spins on the vector computer CDC Cyber 205, using the new ‘Method of 2d colours’ 
for the Monte Carlo part (update speed 22 megaspins/s). The two-dimensional result 
z = 2.147 0.02 disagrees with Domany’s hypothesis. For three dimensions, a systematic 
trend in z with increasing blocksize leads to an extrapolated value z = 1.965~0.010,  which 
is consistent with a theoretically expected value 2.02. 

Since the idea of combining Monte Carlo (MC) simulation and renormalisation group 
analysis was initiated by Ma (1976), successive work refined and applied it to the 
Glauber and Kawasaki kinetic Ising model (Tobochnik et al 1981, Swendsen 1982, 
Katz et a1 1982, Yalabik and Gunton 1982, Pawley et a1 1984). This sort of analysis 
allows only for the simulation of relative small systems such as 163; thus the resulting 
values for critical exponents are possibly systematically wrong because of boundary 
and finite-size effects. 

The present work will use the new and simple dynamic Monte Carlo renormalisation 
group (MCRG)  analysis of Jan et a1 (1983) to determine the dynamical critical exponent 
z. Previous results using different methods resulted in different values for z in three 
dimensions; z = 2.17 70.06 was found (Chakrabarti et a1 1981) by MC simulations 
above T,, MC renormalisation resulted in z = 2.08 (Yalabik and Gunton 1982), and 
an earlier study using the dynamic MC renormalisation group of Jan et a1 (1983) gave 
z = 2.1 1 7 0.03. By interpolation between two epsilon expansions a value of z = 2.02 
was found (Bausch et a1 1981) in contradiction with these Monte Carlo estimates. In 
order to calculate a more precise value for z with Jan’s method and to settle that 
controversy we perform MC simulations for Glauber Ising models at T = T, with large 
sizes up to 5123 in three and 81922 in two dimensions on a vector computer (CDC 
Cyber 205 at Bochum University) and analyse their results. 

We consider a system in its initial state with all spins parallel, which can be 
understood as a magnetisation M = 1. Using the standard Monte Carlo procedure 
(Binder 1984), we follow the system’s relaxation into equilibrium. As the temperature 
for the simulation, we choose the critical temperature T, = 1/0.221 655 (Pawley et al 
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1984). The process of block spin renormalisation then is used to replace a block of 
bd neighbouring spins (in the &dimensional square or cubic lattice) by one renor- 
malised block spin. Its orientation is determined by the orientation of the majority of 
the original spins in the bd cell. These renormalised spins form again another lattice 
for which a magnetisation kfb can be determined. The magnetisation of the primary 
spins approaches a fixed value MI after a time t ;  we will find another time tb where 
the magnetisation of the (bd)-block spin lattice will reach the same value MI. Using 
two different block sizes b and b' and comparing the times tb and tbt at which the 
magnetisations (Mb Mb') of two (b ,  b')  block spin lattices renormalised from the same 
system reach the same fixed value MI, yields the relation (Jan et a1 1983) 

which can be written as 

to define z for b and b ' + a  
In comparison with MC simulations on a scalar computer (Zorn er al 1981, Kalle 

and Winkelmann 1982), the implementation of the algorithm on a vector computer 
requires some profound changes. Starting from an existing program (Wansleben et a1 
1984), our lattice was divided into 2d interpenetrating sublattices, also to allow for 
simple vectorisation of the first renormalisation blocking procedure from 2d primary 
spins. Instead of the manufacturer-supplied random-number generator RANF, the 
shift-register method (Tausworthe 1965, Kirkpatrick and Stoll 1981) had to be used 
for the spin-flip decisions because RANF led to a systematically wrong trend for the 
magnetisation at long times (Kalle and Wansleben 1984). Further refinement of the 
program led finally to a speed of about 22 X lo6 spin-flip attempts per second, which 
may be a world record for the Metropolis method on general purpose computers. 
About 50 hours of central processor time was used in total. The renormalisation part 
of the program took only about one percent of computer time for the three-dimensional 
system, as opposed to most other renormalisation methods. A copy of the computer 
program is available upon request. 

In three dimensions, 1283, 256', and 5123 systems and in two dimensions, 10242, 
20482, 40962 and 8192' lattices were simulated in many runs with times up to 1000 or 
10000 Monte Carlo steps per spin. (A 1080' system was simulated at T =  1.4Tc as a 
feasability study using a Cyber 176, resulting in relaxation times T~ = 2.89 * 0.01 and 
T~ = 0.55 T0.15 for the ansatz M = a ,  e-"'laz e-"'2.) Figure 1 shows the result obtained 
by 265 runs each up to 1000 steps for the 1283 system. The Monte Carlo error for 
each point is smaller than the symbol size. Besides the magnetisation curve for the 
primary spin lattice ( b  = l ) ,  the curves for the different renormalised lattices ( b  = 2, 4, 
8 . .  .) can be seen. Equation (2) requires that these curves can be made to coincide 
by a rescaling of time, which corresponds to a shift to the left or right on the logarithmic 
time scale. As the reader may check by superimposing two copies of this plot, the 
curves for b = 1 and b = 2 do not allow for a good match, whereas the others can be 
made to coincide well (Jan et a1 1983). To recognise even weak effects of cell size b 
and trends with the value M used to compare the curves, different intervals in M were 
chosen to compute the resulting z. Table 1 gives an example of our resulting estimates 
for z. 
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Figure 1. Variation of the original and renormalised magnetisation with time. The number 
on each curve gives the block spin size b. 

Table 1. Exponent estimates for z resulting from simulation of a 10242 lattice (250 runs 
with lo00 MC steps per spin) obtained by averaging over four values M near 0.925,0.875, 
0.825 and 0.775. 

b l b '  I 2 4 8 16 

2 1.69 
4 2.15 2.38 
8 2.30 2.29 2.16 

16 - 2.15 2.13 2.15 
32 - 2.10 2.09 2.15 2.14 

Table 2. Exponent estimates for z resulting from simulation of a 1283 lattice (265 runs up 
to lo00 MC steps per spin) obtained by averaging over four intervals M near 0.85, 0.75, 
0.65 and 0.55. 

blb'  1 2 4 8 16 
~ ~~~~~ 

2 2.06 
4 2.04 2.00 
8 2.09 2.09 2.17 

16 2.05 2.09 2.13 2.09 
32 - 2.04 2.10 2.07 2.04 

An exact value for z in two dimensions with logarithmic corrections was suggested 
by Domany (1984), which in our case gives 

z = 2 +x/log( 6). 

Figure 2 shows a plot of the values z resulting from simulations of the 10242 and 20482 
systems against l/log(b). There is no obvious trend for z with varying b, and even if 
such a trend is suggested, the extrapolated z for 6 + 00 does not approach z = 2.00, 
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but tends to about z = 2.1 1. The influence of the simulated system size was found to 
be marginal, So our data does not support Domany’s hypothesis. Averaging over all 
treated system sizes and pairs b, b’ with b = 2b’ leads to a value 

z=2.14 (d =2)  (3) 

with a probable error of about 0.02. 
The simulations done for the three-dimensional model revealed systematic trends 

overlooked in the earlier paper (Jan et al 1983), which in view of the computer power 
involved in this work is not surprising. As in the two-dimensional case, one finds that 
the values z obtained with block spin lattices b = 1 and b = 2 are not reliable. Detailed 
analysis again shows no clear systematic trend in z for decreasing magnetisation M 
or increasing system size. Jan et af could not detect a trend in z for increasing block 
spin size b. To test our results for such a trend, we plot in figure 3 the values z resulting 
from our three-dimensional data for all three system sizes against the block spin size 
b = 26‘ used to determine them. These points clearly suggest a systematic trend to 
lower values z for increasing b. Assuming the ansatz z = zbSm +constant/ b we can 
extrapolate as in figure 3 by a best fit: 

System size 1283 256’ 512’ 

Zb=m 2.00 1.99 1.97 
Az,=, 0.03 0.03 0.05 

(Note that if one would average over all estimated values for z, as Jan et a1 did, a 
mean of 2.12 7 0.02 would result, which is comparable with their result z = 2.1 1 7 0.03.) 
The influence of system size again can be considered marginal; so a weighted mean 

z = 1.99 7 0.03 ( d  = 31, (4) 

can be regarded as an estimate for z in three dimensions using the above ansatz. (The 
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analysis of the original magnetisation for the primary spins using the relation M 0; t-@'* 
and z = A/ v yields with p /  I, = ( 1  + 7 ) / 2  = 0.515 (Pawley 1984) a value z = 2.04T 0.04 
which supports the extrapolated 2.) 

A more general ansatz for the trend of z for increasing b is 

z = z,,, +constant ban. 

Figure 4 shows the estimated z with different exponents R. Assuming 0.5 < R < 1.5 
(R > 2 seems incompatible with our data), our final estimate is 

z =  1.95T0.10 ( d  = 3 ) .  ( 5 )  

0 
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z 

8 

7 

.6 

Figure 4. For the ansatz z = q=,+const b-", estimates of z, for different a are shown. 
A reasonable interval for R is 0 S < R  < 1.5. 

This number is obviously different from the results given in some earlier papers 
(2.11, 2.17, 2.08; see introduction). By investment of much computer power it was 
possible for the first time to notice the trend of z for increasing block size b in three 
dimensions (as opposed to two dimensions) and so our z systematically shifts away 
from earlier values obtained with less computer time. However, our d = 3 result neatly 
fits with within the theoretically obtained value z = 2.02 of Bausch et al. More details 
are found in Kalle (1984). 

I would like to thank D Stauffer, S Wansleben, W Welke and J G Zabolitzky for 
helpful discussions and D Stauffer for a critical reading of the manuscript. 
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